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Abstract

Rapid advancements in acoustical beamforming techniques for array signal processing are

producing algorithms with increased levels of computational complexity. Concomitantly,

autonomous arrays capable of performing most or all of the processing in situ have become a

focus for mission-critical applications. To address these changes, future sonar systems will

take advantage of parallel in-array processing by coupling transducer nodes with low-power

processing devices to achieve higher performance and fault tolerance at lower cost. This paper

explores parallel algorithms for conventional beamforming (CBF) designed for an in-array

processing system. The parallel algorithms presented o�er scaled speedup and provide the

basis for adaptations in advanced beamforming algorithms. Ó 2000 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Quiet submarine threats and high clutter in the littoral undersea environment
demand that higher-gain acoustic sensors be deployed for undersea surveillance. The
e�ect of this trend is high-element-count sonar arrays with increasing data rates and
associated signal processing. The US Navy is developing low-cost, disposable, bat-
tery-powered, rapidly deployable sonar arrays. These autonomous, passive, sonar
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array technologies face di�culties, such as low fault tolerance due to single points of
failure and computational complexity not readily supported in real-time by con-
ventional means that may be overcome with the use of parallel and distributed
computing (PDC) technology. These challenges in achieving critical levels of per-
formance and reliability are particularly di�cult to overcome for systems that em-
ploy high-®delity beamforming algorithms such as adaptive and matched-®eld
processing and must process data from a large number of sensor nodes.

The next generation of passive array systems will support powerful signal pro-
cessing algorithms, provide fault-tolerant mechanisms to overcome node and com-
munication link failures, and operate at very low power levels so that they may
function on battery power for mission times measured in weeks or months. These
arrays will be capable of uplinking real-time beamformed data with better resolution
than conventional systems while lowering cost by exploiting commercial o�-the-shelf
(COTS) microprocessors and subsystems. This paper presents new parallel algo-
rithms for conventional beamforming (CBF) optimized for future in-array pro-
cessing sonar systems. These embedded technologies have advantages in both
performance and reliability as the computational capacity scales with array size and
fault tolerance is increased by the elimination of single points of failure.

Many optimizations exist for CBF that improve the algorithm complexity. Mucci
presents seven categories of CBF algorithms, each having di�erent spectral charac-
teristics and hardware requirements. These categories include delay-and-sum, par-
tial-sum, interpolation, interpolation with complex sampling, shifted-sideband,
discrete Fourier transform (DFT), and phase-shift beamformers [15]. Although
other optimizations exist, such as HoustonÕs fast beamforming (FBF) algorithm [8],
these seven can serve as a basis. Each algorithm is related to the fundamental delay-
and-sum CBF algorithm. The ®rst ®ve algorithms work in the time domain while the
latter two (i.e., DFT and phase-shift beamforming) work in the frequency domain.
The delay-and-sum algorithm has the unfortunate limitation that the spatial reso-
lution is dependent on sampling frequency, resulting in a very large data space when
large numbers of steering directions are desired. Each of the other algorithms
aforementioned is optimized by minimizing this characteristic to varying degrees.

The DFT beamforming algorithm was chosen as the algorithm for the in-array
parallel processing system. Advantages of the DFT beamformer include its ability to
be updated for use with adaptive algorithms such as the minimum variance distor-
tionless response (MVDR) beamformer [11]. Also, inverse transforming is not re-
quired since the frequency information is often advantageous for signal detection,
localization, and classi®cation in post-processing objectives [15]. DFT beamforming
algorithms have the ability to support any number of steering directions at arbitrary
angles, and take advantage of the e�ciency inherent in the fast Fourier transform
(FFT) algorithm. McMahon discusses some of the disadvantages of the DFT
beamformer including the inability of the Fourier domain to track certain classes of
pulses, which is a general limitation of high-resolution Fourier analysis [12]. Also,
even though the memory space required for the DFT beamformer is smaller than
that for the delay-and-sum beamformer, Mucci points out that the DFT has a large
data space in comparison to memory-e�cient methods such as partial-sum, the
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interpolation techniques, and the phase-shift algorithm. Despite these limitations,
DFT beamforming algorithms are attractive for parallel sonar arrays.

Conventional arrays may be described as a string of ``dumb nodes'' (i.e., nodes
without processing power) with a large front-end processor, shown in Fig. 1(a).
Alternately, these dumb nodes may be out®tted with intelligent COTS micropro-
cessors, shown in Fig. 1(b). Emerging technologies for sonar signal processing arrays
will exploit such intelligent distributed-memory multicomputer systems. These sys-
tems are typically programmed in a multiple instruction multiple data (MIMD) [4]
fashion using a message-passing paradigm. Coarse-grained parallel decompositions
are usually the preferred approach on distributed-memory multicomputers; however,
medium-grained algorithms are also feasible with the advent of fast interconnection
networks with lightweight communications. The coarse-grained and medium-
grained parallel CBF algorithms introduced in this paper can be used as the foun-
dation for more sophisticated beamformers that one day will be targeted for intel-
ligent array systems. These advanced techniques, in increasing order of complexity,
include split-aperture beamforming, adaptive beamforming, matched-®eld tracking,
and matched-®eld processing. The conventional beamformer exploited and parall-
elized in this paper will remain as a fundamental portion of such future algorithms,
and thus the parallel algorithms presented can serve as a basis for all future work in
this ®eld.

Other research initiatives in the parallelization of beamforming algorithms include
decompositions of conventional techniques over tightly coupled shared-memory
multiprocessors. Although the amount of digital signal processing (DSP) research on
array processing is abundant, little has been accomplished in the area of MIMD-
style decompositions. Several projects from the naval undersea warfare center

Fig. 1. Conventional passive array vs distributed parallel sonar array.
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(NUWC) have developed real-time sonar systems by exploiting massive parallelism.
Salinas and Bernecky [17] mapped the delay-and-sum beamformer to a MasPar, a
single instruction multiple data (SIMD) architecture. Dwyer used the same MasPar
machine to develop an active sonar system [3]. Lastly, Zvara built an active sonar
processing system on connection machineÕs SIMD architecture, the CM 200 [22]. A
handful of other papers discuss a variety of adaptive algorithms on parallel systems
including systolic arrays, SIMD style machines, and COTS-based DSP multicom-
puters [1,19]. However, little of the previous work has focused on issues involved in
either distributed or in-array processing.

This paper introduces three parallel DFT beamforming algorithms for distributed
in-array processing: iteration decomposition, angle decomposition, and pipelined
angle decomposition. In Section 2, the reader is presented with basic beamform
theory and the sequential DFT beamformer. In Section 3, the parallel iteration-
decomposition beamformer, which is based on a pipelined approach, is introduced.
In Section 4, angle decomposition, a data-parallel approach, is discussed. The third
parallel beamforming algorithm, pipelined angle decomposition, is presented in
Section 5 and is shown to be a hybrid of the ®rst two parallel algorithms. The
sensitivity of each algorithm to array parameters is shown in Section 6 using a CAD-
based rapid virtual prototyping environment. Finally, in Section 7, a brief set of
conclusions and directions for future research is enumerated.

2. Conventional beamforming

Conventional delay-and-sum beamforming may be performed in either the fre-
quency or time domain. In either domain, the algorithm is essentially the same:
signals sampled across an array are phased (i.e., delayed) to steer the array in a
certain direction, after which the phased signals are added together. To phase the
incoming signals, some geometry is needed to transform the steered ``look'' direction
to the correct amount of delay at each node. Fig. 2 shows an incoming plane wave
and the geometry needed to derive the delay.

This delay is directly proportional to Dx as shown in the ®gure. Adjacent nodes
would receive the wave front at a di�erence in time of

d� Dx
c
� d sin�h�

c
; �2:1�

where d is the distance between adjacent nodes, h the steering angle from the arrayÕs
perpendicular (i.e., from broadside), and c is the speed of sound in water (estimated
as 1500 m/s). Each node, indicated by its node number m, would receive a signal
from angle h at a relative delay of

�mÿ 1�d; �2:2�
with respect to node zero. In the frequency domain, a vector s may be built which,
when multiplied by the respective incoming signals, will properly phase the system.
This vector is de®ned as
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s � �1; eÿjkd sin �h�; eÿj2kd sin �h�; . . . ; eÿj�Mÿ1�kd sin �h��; �2:3�
where

k � 2p
k
� x

c
�2:4�

is equal to the wave number and M is the number of nodes. The ®nal beamform
equation is a summation, x�t�, of the phased signals multiplied by a windowing
weight matrix w t

y�t� � wtx�t� �time domain� �2:5�
or

y�x� � wxx�x� �frequency domain�: �2:6�
Readers interested in a more complete discussion of beamforming algorithms are
referred to [2,7,10].

The baseline DFT beamforming algorithm, adapted from [16], consists of ®ve
operations: a window multiplication, DFT (via the radix-2 FFT adapted from [14]),
steering factor (i.e., phasing) multiplication, beamforming summation, and last,
computation of each angleÕs power and inverse Fourier transform. Though not
necessary for some types of post-processing, the inverse transform is included in
order to output the beamformed time series. The steps are shown in Fig. 3, where
each of the operations is annotated with the dimension map of the data object
produced by the block. The size of the matrices and vectors involved are de®ned in
terms of the following parameters: number of nodes �M�, input sample size �L�,
number of frequency bins �N�, and number of steering directions �S�. The nodes are the
sensors distributed across the length of the sonar array, and the input samples are the

Fig. 2. Wave fronts hitting array.
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time-domain data values collected from the sensors. The frequency bins employed in
a given beamformer depend upon the nature and number of input signals of interest
and the intervals in frequency they occupy, whereas the steering directions are the
angles used in the beamforming process.

The window factor multiplication stage scales each nodeÕs input by some factor.
For CBF, a windowing function such as Hanning, Blackman, or Dolph±Chebyshev
is typically applied across the hydrophone array such that nodes toward the ends of
the array contribute less in the beamform summation stage. The computations in-
volved include L�M ¯oating-point operations. This method improves the signal-
to-interference ratio and is analogous to windowing on Fourier transformations [18].
Adaptive techniques adjust these scalar weights to optimize the beamform solution
by minimizing output power in a constrained manner [5,21].

The FFTs stage takes the scaled temporal data stream and converts it into
complex-valued spectra. The computations involved include M distinct FFT oper-
ations, each comprised of O�L� log L� ¯oating-point operations. Since the amount
of data entering this stage equals the amount of data exiting, it is reasonable to
assume that this operation should be performed within each node to preserve the
data parallelism inherent in the system (i.e., each node transforms its own sample
sets).

The steering factor multiplication stage is a major computational bottleneck of
DFT beamforming and is not required in time-domain algorithms. The computa-
tions involved include M � N � S complex multiplications. It is interesting to note
that this steering factor multiplication stage is exactly the same operation as corre-
lation by plane-wave replica vectors and thus lead to matched-®eld techniques. The
steering factor matrix may be recomputed with each iteration of the beamformer, or
it may simply be stored and retrieved from memory. The former method will result in
a memory-e�cient model while the latter will result in a computation-e�cient model.

The beamform summation stage represents another major computational bot-
tleneck. However, while this stage shares the sample computational complexity as
the previous stage, it is comprised of complex additions that are typically less work
than the comparable number of complex multiplies required in the steering factor
multiplication stage. The beamform summation stage is the actual spatial ®lter, and
thus the reduced output data is ideally ®ltered spectra for each angle of interest. This
operation is the same for any beamforming method in time or frequency, using
conventional or adaptive techniques.

Fig. 3. Flowchart for sequential DFT beamformer.
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Finally, the IFFT/power calculation stage transforms the data back into the time-
domain and calculates the power of the beamformed spectra for each steering
direction. The computations involved include S distinct inverse FFT (IFFT) oper-
ations, each comprised of O�L� log L� ¯oating-point operations, along with
O�L� S� ¯oating-point operations to compute the power. This work is often left for
post-processing stages or completely ignored because spectral information is many
times more useful than temporal data when human operators (or pattern recognition
post-processors) analyze the data. Nonetheless, for completeness and to better
support in-array processing, both the IFFT operation and the power calculation are
included in all our algorithms.

To further analyze the performance characterisitics of this beamformer and its
stages, the sequential baseline algorithm was coded and executed on an UltraSP-
ARC-1 workstation running at 170 MHz with 128 MB of memory. Fig. 4 shows the
algorithmÕs performance when computing 91 and 181 steering directions for di�erent
numbers of input sensors (i.e., problem sizes). The top of each stacked bar represents
the total time to complete, and each bar is partitioned by the ®ve stages discussed
above (where the window factor multiplication is combined with the FFT stage and
the inverse FFT is combined with the beamform summation stage), with other
representing the overhead of the timing functions employed for the measurements.
As predicted, the steering factor multiplication stage represents the largest bottleneck
followed by the beamform summation stage. The remaining stages represent a small
fraction of the total computation time. This algorithm was optimized for memory
e�ciency by recomputing the steering matrix factors at each iteration; therefore, the
execution time of the steering multiplication could be signi®cantly decreased if de-
sired, but with the penalty of a larger memory requirement. For this sequential
baseline, we chose to ignore the communication time required to gather samples
from a passive sonar array with dumb nodes. Since communication in the sequential
system is primarily for the collection of input samples, and sonar systems typically
function with a relatively low rate of input sampling (e.g., in units of kHz), an ob-
jective of complete overlap of communication by computation to hide communi-
cation latency is easily realized on traditional systems.

In order to maximize the e�ciency of the parallel DFT beamforming algo-
rithms, the steering factor multiplication and beamform summation stages must be

Fig. 4. Average execution times for the DFT beamformer (averaged over 1000 iterations). (a) 91 steering

direction, (b) 181 steering direction.

A.D. George et al. / Parallel Computing 26 (2000) 1231±1252 1237



parallelized so as to overlap or partition these computations while simultaneously
minimizing communication requirements. Each of the algorithms we present in the
following three sections (i.e., iteration decomposition, angle decomposition, and
pipelined angle decomposition) ensure that these computationally complex stages are
parallelized optimally.

Fine-grained decompositions of the DFT beamformer were not attempted since
such a solution causes an excess of communication, which is di�cult to support on a
distributed-memory multicomputer. Such ®ne-grained decompositions include par-
titioning each nodeÕs FFT and window factor multiplication stages, which would be
ill-suited for a loosely coupled system.

3. Iteration decomposition

The ®rst parallel algorithm for in-array DFT beamforming focuses on the
partitioning of iterations, where an iteration is de®ned as one complete beam-
forming cycle. Iteration decomposition of the DFT beamformer is based on a
coarse-grained scheduling algorithm that pipelines the steering factor multiplica-
tion, beamform summation, and IFFT/power calculation stages. The window
factor multiplication and FFT stages take advantage of the distribution of data
across sonar nodes, transforming the data before relaying it to a scheduled pro-
cessor. This initial data-parallel approach is adapted for each of the other parallel
algorithms as well. Intuitively, it is often wise to decompose the program to take
advantage of the proximity between available data and processors if that data does
not have dependencies. Using this intuition, one might choose to compute the
steering factor multiplication stage at each node for local data since data depen-
dencies do not exist until the beamform summation operation. However, the data
space that would need to be communicated later for the summation would be many
times larger causing signi®cant communication complexity. This characteristic is
due to the fact that, for each input signal, the steering factor multiplication stage
calculates a phased vector for every steering direction of interest. Therefore, not
only is it desirable to parallelize the steering factor multiplication stage to reduce
computational complexity, but in so doing we can also reduce memory and com-
munication requirements.

With the iteration-decomposition parallel algorithm, each iteration (from the
steering factor multiplication stage through the end of the iteration) is scheduled to a
processor in a round-robin fashion. At startup, node 1 is scheduled the ®rst iteration,
node 2 is scheduled the second, etc. The decomposition is split into two computa-
tional stages, as shown in Fig. 5, which are referred to as computation stages 1 and 2.
The ®rst stage is partitioned in the data-parallel fashion previously mentioned while
the second stage uses a control-decomposition approach. Therefore, computation
stage 1 requires the computational resources from all the nodes, while computation
stage 2 ®nishes the algorithm on a single processor. To increase the e�ciency of the
algorithm, iterations are pipelined such that new iterations begin during the com-
putation stage 2 for previously started iterations. The pipeline works by interrupting
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iteration's computation stage 2 at well-de®ned points to begin the computation stage
1 of a new iteration. A 4-node array would require three interruptions to start three
new iterations before the computation stage 2 from any one iteration is completed.
Thus, the size of the pipeline depends on the number of nodes in the array.

Iteration decomposition normalizes the amount of computation required between
interruptions. This trait is a result of the algorithmÕs linear dependence on number of
nodes and is illustrated by the following example. Consider an 8-node array re-
quiring S � 32 steering directions and N � 10 frequency bins. The steering factor
multiplication would require

S � N �M � 32� 10� 8 � 2560 �2:7�

complex multiplications. However, the operations are pipelined over 8 iterations
during which the processors only need to compute 1/8th of the complex multiplies
(or 320) per new iteration. If the system was scaled to 16 nodes, then the number of
total complex multiplies between interruptions would double. However, the pro-
cessor would have twice the amount of time to compute the result, maintaining 320
complex multiplies per new iteration over a total of 16 pipelined iterations. Ignoring
communication, an array that could support eight nodes could support in®nitely
many! However, the result latency of any given iteration, which is the time from the
original data collection for that iteration until the result is complete, also increases
linearly with the size of the array and may conceivably be too long for very large
arrays.

The amount of communication also increases linearly with the number of array
nodes. More precisely, the complexity of communication stage 1, which contains
the communication of the transformed input vectors to the scheduled processor,
increases linearly with the number of nodes �M�. Communication stage 2, which
contains the communication of the results to a designated I/O node, is independent
of M. It may be possible to support arbitrarily sized systems by using interconnects
such as register-insertion rings, which have the ability to scale well [20]. The
communication capability of such interconnects increases as nodes are added.
Other less sophisticated networks such as buses are limited with respect to their
ability to scale, which increases in array size, since their peak bandwidth is ®xed
and adding nodes increases contention without increasing aggregate network
throughput.

To evaluate the performance of this parallel algorithm, several implementations
were coded in C with the message-passing interface (MPI) [13] and executed on a
cluster of UltraSPARC workstations connected by 155 Mb/s ATM network via
TCP/IP. For each array size, the top of the stacked bars in Fig. 6 represents the
average execution time of any given iteration. In Fig. 6(a), the results from
computing 91 steering directions are shown, while in Fig. 6(b) the results for 181
steering directions are shown. The times are broken down in stages showing
signi®cant computational and communicational operations. As discussed in Sec-
tion 2, the steering factor multiplication and beamform summation stages domi-
nate the computation times. The time spent in the window factor multiplication/
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FFT and power calculation stages is negligible compared to the more signi®cant
of the computational stages. The window factor multiplication/FFT stage is so
small that it is barely visible in the bottom of each bar graph. There is also
signi®cant overhead incurred from communication latencies, which is undoubtedly
a result of running the algorithm through the overly robust TCP/IP software
layers on top of ATM. We can expect better performance with lighter commu-
nication software layers on embedded systems. For instance, with embedded MPI
implementations the processes communicate with one another over the network
without the need for the internetworking functionality of the TCP/IP protocol
stack, and are able to achieve latencies approaching that of the hardware (i.e., the
sum of the hardware interface, transmission, and propagation delays). In doing so,
communication latency can be reduced from thousands to hundreds of micro-
seconds and less.

Although the result latency for an iteration-decomposition solution is fairly long,
the average execution time for any iteration does very well. Iteration decomposition
also yields speedup over the sequential program with a parallel e�ciency of about
68%, as shown in Fig. 7. Because the problem size increases with the number of
nodes, these speedup numbers re¯ect scaled speedup. Furthermore, the comparisons
are made to a purely sequential algorithm that ignores communication latency, as
previously discussed.

Fig. 7. Scaled speedup for the iteration-decomposition method. (a) 91 steering direction, (b) 181 steering

direction.

Fig. 6. Average execution times for the iteration-decomposition method (averaged over 1000 iterations).

(a) 91 steering direction, (b) 181 steering direction.
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4. Angle decomposition

The second parallel algorithm focuses on partitioning steering angle solutions to
each of the nodes, a form of domain decomposition. Angle decomposition of the
parallel DFT beamforming algorithm is based on a medium-grained algorithm that
partitions the ®ve operations discussed in Section 2 across all nodes. The window
factor multiplication and FFT stages (or computation stage 1) again take advan-
tage of the distribution of data across sonar nodes and operate in exactly the same
manner as in iteration decomposition. On the other hand, computation stage 2
di�ers signi®cantly from the method used in the prior decomposition. In angle
decomposition, the entire algorithm operates in a data-parallel fashion. Instead of a
single node computing the beamform solution for all angles, the nodes divide the S
steering directions among the processors and independently beamform in those
directions. The number of steering angles each node computes is thus S=M . Using
this decomposition, the workload for a single iteration is distributed evenly to all
nodes.

Fig. 8 shows a block diagram illustrating this method. With respect to commu-
nication stage 1, angle decomposition is immediately distinguishable from iteration
decomposition. As shown in the ®gure, the communication in this stage is an all-to-
all communication, which is this algorithmÕs greatest de®ciency. The communication
does not scale linearly but rather quadratically with the number of nodes, resulting in
a more complex O�M2� communication. However, with some broadcast-capable
networks, this complex communication can be reduced to O�M�. For instance,
slotted ring networks can be employed in a sonar array system. With a slotted ring,
each node is guaranteed its fair share of the aggregate bandwidth, and for each node
to communicate with all other nodes it merely transmits a single message with a
broadcast header onto the network. Each of the other nodes on the ring copies and
uses the same data from the message and after full circulation around the ring the
message is removed by the sender. In this fashion, the complexity of the all-to-all
communication is reduced from O�M2� to O�M� since each node communicates but
once. As in the previous algorithm, the total amount of communication in com-
munication stage 2 is independent of array size, although angle-decomposition
partitions the output data into M smaller segments.

One advantage of this algorithm over iteration decomposition is the low result
latency of any individual beamform solution. Recall that with iteration decompo-
sition, each solutionÕs latency is dependent on the size of the array. That is, larger
arrays will cause more interruptions for starting new iterations, thus increasing the
length of time required to ®nish computations for any given iteration. Angle de-
composition ensures the lowest latency to produce a ®nal result of any decomposi-
tion. Using much the same reasoning as for iteration decomposition, the latency of
the beamform solution is computationally independent of the array size, a result that
is due to the algorithmÕs linear dependence on M. This linear dependence implies that
the latency of any single solution of the algorithm will be the same for eight nodes as
it is for in®nitely many, again ignoring communicational requirements. If the in-
terconnect employed was fully connected or could scale as the square of M, then the
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network would also support linear scalability [9]. However, for many applications
such a robust network is unlikely to be cost e�ective.

Another advantage of the angle-decomposition parallel algorithm is the e�cient
use of memory. Since each node performs a range of steering angles, memory re-
quired for the steering factor multiplication may be distributed across all nodes. The
iteration-decomposition algorithm requires either recomputation of the large steer-
ing matrix with each new iteration or copies of the matrix in every node.

For the domain decomposition used in this algorithm, the degree-of-parallel-
ism (DOP) achieved is dependent on the number of steering directions, with
high-resolution beamformers expected to glean the best speedup results. The
number of frequency bins also increases the DOP but, similar to the number of
nodes, has the unfortunate e�ect of increasing the communication requirements
quadratically.

Fig. 9 charts the average execution times for computing 91 steering directions and
181 steering directions. The times are again broken down in stages to show signi®-
cant computational and communicational operations. The steering factor multipli-
cation and beamform summation stages dominate the computation times while the
FFT and window and power calculation stages are negligible. The communication in

Fig. 9. Average execution times for the angle-decomposition method (averaged over 1000 iterations).

(a) 91 steering direction, (b) 181 steering direction.

Fig. 10. Scaled speedup of the angle-decomposition method. (a) 91 steering direction, (b) 181 steering

direction.
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the angle-decomposition algorithm represents more than half of the total execution
time. Again, these large communication latencies may be exaggerated in comparison
to the actual hardware latencies since an in-array processing system will have a
lighter communication stack than TCP/IP.

As shown in Fig. 10, the scaled speedup of the angle decomposition is relatively
poor, yielding a parallel e�ciency of less than 50% in most cases. The large
communication latencies were detrimental to the overall performance of the
algorithm.

5. Pipelined angle decomposition

The third parallel algorithm focuses on partitioning steering angle solutions to
each of the nodes (i.e., data parallelism), but it also employs pipelining (i.e.,
control parallelism) to improve e�ciency. Pipelined angle decomposition overlaps
the communication and computational stages of angle decomposition at the ex-
pense of higher result latency for any single beamform iteration. Therefore,
pipelined angle decomposition is a compromise between the iteration- and angle-
decomposition algorithms. Pipelined angle decomposition decreases result latency
from that in iteration decomposition and achieves better speedup than angle de-
composition.

The pipelining, shown in Fig. 11, is achieved by overlapping communication stage
1 with computation stage 2 from the preceding iteration and computation stage 1
from the succeeding iteration. The result collection in communication stage 2 is
overlapped in a similar fashion. After iteration's communication stage 1 is initiated,
the algorithm picks up the previous iteration at computation stage 2. At the end of
this computational stage, the result collection, communication stage 2, for that it-
eration is begun. Finally, before completing communication stage 1, the algorithm
begins computation stage 1 of a new iteration. Thus, an e�ective overlapping of
communication and computation stages is achieved.

Pipelined angle decomposition is not as e�cient as iteration decomposition but
constrains the length of the pipeline to three iterations, as opposed to iteration
decomposition whose latency grows as a function of M. Therefore, ignoring the
increasing communication latencies, the result latency to produce a single beam-
form solution in pipelined angle decomposition remains independent of array size,
yet is longer than the latency in pure angle decomposition. The DOP of the al-
gorithm remains identical to that of angle decomposition, but average speedup is
improved.

In Fig. 12, the execution times for computing 91 steering directions and 181
steering directions are shown. As expected, the ®gures show that the pipelining has
improved the average execution time from that of angle decomposition. The steering
factor multiplication and beamform summation still account for the majority of
computational load while the execution times of FFT, window factor multiplication
and power calculation stages are still insigni®cant. Communication latencies of
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pipelined angle decomposition are minimized, which is clearly shown by the time
spent receiving with respect to angle decomposition.

The scaled speedup for pipelined angle decomposition, shown in Fig. 13, has
improved marginally over angle decomposition for large array sizes by increasing
parallel e�ciencies to over 50%. Small arrays take advantage of the overlap in
communication and computation, increasing parallel e�ciency to almost 70%.

6. Comparative analysis

In this section, the advantages and disadvantages of each of the three
algorithms are discussed, and comparisons are made between their performances.
Fig. 14 shows the average execution time for each of the parallel beamformers.
The iteration-decomposition algorithm shows the best performance, whereas the
angle-decomposition algorithm generally performs the worst. Of course, the trade-
o� between these two algorithms is the large result latency incurred for iteration
decomposition. The pipelined angle decomposition, as predicted in Section 5,
compromises the angle decompositionÕs short result latency for a somewhat better
average execution time. Large array sizes may cause the communication in the
two angle-decomposition algorithms to grow quickly, especially if the network

Fig. 13. Scaled speedup for the pipelined angle decomposition. (a) 91 steering direction, (b) 181 steering

direction.

Fig. 12. Average execution times for pipelined angle decomposition (averaged over 1000 iterations). (a) 91

steering direction, (b) 181 steering direction.
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cannot support broadcast tra�c. A study of this e�ect is discussed in more detail
below.

The scaled speedup plots in Fig. 15 indicate that iteration decomposition de-
livers the best performance of the three algorithms with pipelined angle decom-
position performing almost as well in some cases. Although angle decomposition
is conceptually less e�cient than its pipelined cousin, the added complexity of
setting up the pipelined angle decomposition led to more e�cient execution by
angle decomposition for small arrays with lower steering resolution. Angle de-
composition certainly performs less favorably for larger arrays and higher-reso-
lution systems.

To provide a sensitivity study of array parameters on an in-array processing
system, each of the parallel beamformers was also executed on the integrated sim-
ulation environment (ISE), a rapid virtual prototyping tool developed at the Uni-
versity of Florida [6]. ISE has the ability to run real applications written in MPI over
simulated systems built in the block oriented network simulator (BONeS), a com-
mercial product of Cadence Design Systems. A number of interconnection schemes
have been developed speci®cally in ISE for prototyping a distributed parallel sonar
array. These interconnects include a register insertion ring, a bidirectional register
insertion array, and a slotted ring, each of which support linear scalability with
increasing numbers of nodes.

Fig. 15. Scaled speedups for the three parallel algorithms. (a) 91 steering direction, (b) 181 steering

direction.

Fig. 14. Average execution times for the three parallel algorithms (averaged over 1000 iterations). (a) 91

steering direction, (b) 181 steering direction.

1248 A.D. George et al. / Parallel Computing 26 (2000) 1231±1252



ISE allows researchers to experiment with systems that may be too impractical or
expensive to prototype in the traditional sense. The following experiments show the
sensitivity and scaling ability of the three parallel beamforming algorithms over a
larger range of parameters. From this data, a more accurate account of how the
decompositions will perform on an actual in-array processing system is engaged.

The ®rst sensitivity study involves the variation of parameters for network speed
and processor speed in an 8-node array with a bidirectional register-insertion net-
work using a minimal protocol stack. To study the e�ect of the speed of the eight
processors in the virtual prototype, variations from 25% to 100% of the performance
of an UltraSPARC processor running at 170 MHz are used. In addition, variations
in network speed range from 2.5 to 10 Mb/s. Both ranges are representative of the
levels of performance that can be expected with low-power components for com-
putation and communication. Each of the three parallel beamformers was executed
on virtual prototypes with these permutations, and execution times are shown in
Fig. 16. As can be seen, the iteration and angle-decomposition methods provide
similar performance results as the speed of the system is varied. The processor speed
has the most signi®cant e�ect on the execution time of these beamformers. As net-
work speed is decreased, the performance of the algorithms is also decreased, though
to a lesser extent. Graphically, this trend appears as a gradual slope in the network-

Fig. 16. Contour plots for each algorithm ranged over network and processor speed. (a) Iteration

decomposition, (b) angle decomposition, (c) pipelined angle decomposition.
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speed dimension. However, pipelined angle decomposition shows little performance
change as network speed is varied, indicating the additional ability of this method to
overlap computation with communication. However, this result is likely to change
for very large arrays, in which communication latencies may be more dominant than
computational latencies. Dependency on network speed for this 8-node system only
appears when the processor speed is so fast and the network speed so slow as to
cause the communication to last longer than the computations. As with the other
algorithms, processor speed remains the dominant constraint for pipelined angle
decomposition.

The second sensitivity study, shown in Fig. 17, demonstrates the scalability of the
algorithms as the number of nodes is changed. The execution time increases linearly
as the number of nodes is increased; however, the slope is gradual for all three al-
gorithms. This trend bodes well for the angle-decomposition methods, which might
be expected to incur large communication latencies for large arrays. From 2 to 32
nodes, the execution time per iteration increases approximately 30% for all decom-
positions. Since the problem size and the processing capacity both grow linearly with
the number of nodes for a ®xed number of steering directions and frequency bins, as
the problem size doubles the increase in execution time would ideally be 0%.
However, due to the communication and the synchronization required between the
processors in the nodes of the array, the results indicate a modest increase in exe-
cution time of approximately 12% as the problem size doubles.

7. Conclusions and future research

The continuing development of beamforming algorithms is creating the need for
integrated solutions that leverage algorithmic optimizations with parallel embedded
system architectures. These architectures must support a large number of nodes,
steer with increased ®delity, and o�er better fault tolerance in the event of node
failures, all of which place increasing strain on memory requirements, processor
speed, network e�ciency, and software intelligence. Parallel system architectures
hold the potential to eliminate single points of failure and improve hardware fault

Fig. 17. Execution time for each algorithm vs number of nodes.
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masking and tolerance, while parallel algorithms for these architectures can support
large arrays due to linear dependence of problem size on the number of nodes. The
goal of this research was to provide general solutions for in-array parallel beam-
forming, ®rst for conventional beamformers, but ultimately extensible to split-
aperture, adaptive, and matched-®eld techniques.

The con®guration of a sonar array maps particularly well to loosely coupled
multicomputer architectures, thus the parallel solutions were constrained to coarse-
grained and medium-grained decompositions. Although ®ne-grained solutions are
not impossible, they are certainly ine�cient on these systems. Using the sequential
DFT beamformer as a baseline, new parallel algorithms were developed using both
coarse-grained iteration and medium-grained angle decomposition. In addition, by
combining attributes of both iteration and angle decomposition, a hybrid form of
parallel algorithm was developed.

The iteration-decomposition algorithm was found to exhibit the best e�ciency
and the best scalability at the cost of a large result latency. Of the algorithms pre-
sented, it is also the least complex to implement and is easily adaptable in the event
of hardware faults. The angle-decomposition method shows the lowest result latency
and is memory-e�cient since the steering factor multiplication matrix may be dis-
tributed across the entire array. However, it also exhibits the worst parallel e�ciency
and may be di�cult to restructure in the event of node failures. The pipelined angle
decomposition improves the e�ciency of angle decomposition at the cost of longer
result latency and maintains the memory e�ciency of the angle-decomposition al-
gorithm. However, it also su�ers from di�culty in supporting fault-tolerant proce-
dures. Each of the parallel beamforming algorithms presented is scalable to di�erent
degrees for large arrays, as was shown by sensitivity analyses with the aid of a rapid
virtual prototyping tool.

Future directions from this research will focus on leveraging the contributions
from these new parallel algorithms for in-array processing to support additional
beamformers with increasing sophistication in their acoustic and signal processing
attributes. Currently, extensions under development include parallel algorithms for
split-aperture beamforming and MVDR adaptive beamforming. Furthermore, re-
search on the implementation of fault-tolerance mechanisms to support the three
parallel algorithms is underway.
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